Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytomedicine ; 128: 155517, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38518650

RESUMO

BACKGROUND: Berberine is the main bioactive constituent of Coptis chinensis, a quaternary ammonium alkaloid. While berberine's cardiovascular benefits are well-documented, its impact on thrombosis remains not fully understood. PURPOSE: This study investigates the potential of intestinal microbiota as a novel target for preventing thrombosis, with a focus on berberine, a natural compound known for its effectiveness in managing cardiovascular conditions. METHODS: Intraperitoneal injection of carrageenan induces the secretion of chemical mediators such as histamine and serotonin from mast cells to promote thrombosis. This model can directly and visually observe the progression of thrombosis in a time-dependent manner. Thrombosis was induced by intravenous injection of 1 % carrageenan solution (20 mg/kg) to all mice except the vehicle control group. Quantitative analysis of gut microbiota metabolites through LC/MS. Then, the gut microbiota of mice was analyzed using 16S rRNA sequencing to assess the changes. Finally, the effects of gut microbiota on thrombosis were explored by fecal microbiota transplantation. RESULTS: Our research shows that berberine inhibits thrombosis by altering intestinal microbiota composition and related metabolites. Notably, berberine curtails the biosynthesis of phenylacetylglycine, a thrombosis-promoting coproduct of the host-intestinal microbiota, by promoting phenylacetic acid degradation. This research underscores the significance of phenylacetylglycine as a thrombosis-promoting risk factor, as evidenced by the ability of intraperitoneal phenylacetylglycine injection to reverse berberine's efficacy. Fecal microbiota transplantation experiment confirms the crucial role of intestinal microbiota in thrombus formation. CONCLUSION: Initiating our investigation from the perspective of the gut microbiota, we have, for the first time, unveiled that berberine inhibits thrombus formation by promoting the degradation of phenylacetic acid, consequently suppressing the biosynthesis of PAG. This discovery further substantiates the intricate interplay between the gut microbiota and thrombosis. Our study advances the understanding that intestinal microbiota plays a crucial role in thrombosis development and highlights berberine-mediated intestinal microbiota modulation as a promising therapeutic approach for thrombosis prevention.

2.
Nutrients ; 16(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38398843

RESUMO

The associations of dynapenic abdominal obesity and transitions with frailty progression remain unclear among middle-aged and older adults. We included 6937 participants from the China Health and Retirement Longitudinal Study (CHARLS) and 3735 from the English Longitudinal Study of Aging (ELSA). Participants were divided into non-dynapenia and non-abdominal obesity (ND/NAO), abdominal obesity alone (AO), dynapenia alone (D), and dynapenic abdominal obesity (D/AO). Frailty status was assessed by the frailty index (FI), and a linear mixed-effect model was employed to analyze the associations of D, AO, D/AO, and transitions with frailty progression. Participants with AO, D, and D/AO had increased FI progression compared with ND/NAO in both cohorts. D/AO possessed the greatest additional annual FI increase of 0.383 (95% CI: 0.152 to 0.614), followed by D and AO in the CHARLS. Participants with D in the ELSA had the greatest magnitude of accelerated FI progression. Participants who transitioned from ND/NAO to D and from AO to D/AO presented accelerated FI progression in the CHARLS and ELSA. In conclusion, dynapenic abdominal obesity, especially for D/AO and D, presented accelerated frailty progression. Our findings highlighted the essential intervention targets of dynapenia and abdominal obesity for the prevention of frailty progression.


Assuntos
Fragilidade , Obesidade Abdominal , Pessoa de Meia-Idade , Humanos , Idoso , Obesidade Abdominal/complicações , Obesidade Abdominal/epidemiologia , Estudos Longitudinais , Fragilidade/epidemiologia , Fragilidade/complicações , Circunferência da Cintura , Obesidade/complicações , Obesidade/epidemiologia , Força da Mão
3.
Sensors (Basel) ; 24(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38339612

RESUMO

Addressing conventional neurosurgical navigation systems' high costs and complexity, this study explores the feasibility and accuracy of a simplified, cost-effective mixed reality navigation (MRN) system based on a laser crosshair simulator (LCS). A new automatic registration method was developed, featuring coplanar laser emitters and a recognizable target pattern. The workflow was integrated into Microsoft's HoloLens-2 for practical application. The study assessed the system's precision by utilizing life-sized 3D-printed head phantoms based on computed tomography (CT) or magnetic resonance imaging (MRI) data from 19 patients (female/male: 7/12, average age: 54.4 ± 18.5 years) with intracranial lesions. Six to seven CT/MRI-visible scalp markers were used as reference points per case. The LCS-MRN's accuracy was evaluated through landmark-based and lesion-based analyses, using metrics such as target registration error (TRE) and Dice similarity coefficient (DSC). The system demonstrated immersive capabilities for observing intracranial structures across all cases. Analysis of 124 landmarks showed a TRE of 3.0 ± 0.5 mm, consistent across various surgical positions. The DSC of 0.83 ± 0.12 correlated significantly with lesion volume (Spearman rho = 0.813, p < 0.001). Therefore, the LCS-MRN system is a viable tool for neurosurgical planning, highlighting its low user dependency, cost-efficiency, and accuracy, with prospects for future clinical application enhancements.


Assuntos
Realidade Aumentada , Cirurgia Assistida por Computador , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Neuronavegação/métodos , Estudos de Viabilidade , Tomografia Computadorizada por Raios X , Lasers , Cirurgia Assistida por Computador/métodos , Imageamento Tridimensional/métodos
4.
ACS Biomater Sci Eng ; 10(3): 1190-1206, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38343186

RESUMO

Cardiovascular disease poses a significant threat to human health in today's society. A major contributor to cardiovascular disease is atherosclerosis (AS). The development of plaque in the affected areas involves a complex pathological environment, and the disease progresses rapidly. Nanotechnology, combined with emerging diagnostic and treatment methods, offers the potential for the management of this condition. This paper presents the latest advancements in environment-intelligent responsive controlled-release nanoparticles designed specifically for the pathological environment of AS, which includes characteristics such as low pH, high reactive oxygen species levels, high shear stress, and multienzymes. Additionally, the paper summarizes the applications and features of nanotechnology in interventional therapy for AS, including percutaneous transluminal coronary angioplasty and drug-eluting stents. Furthermore, the application of nanotechnology in the diagnosis of AS shows promising real-time, accurate, and continuous effects. Lastly, the paper explores the future prospects of nanotechnology, highlighting the tremendous potential in the diagnosis and treatment of atherosclerotic diseases, especially with the ongoing development in nano gas, quantum dots, and Metal-Organic Frameworks materials.


Assuntos
Angioplastia Coronária com Balão , Aterosclerose , Doenças Cardiovasculares , Stents Farmacológicos , Nanopartículas , Humanos , Aterosclerose/diagnóstico , Aterosclerose/terapia , Aterosclerose/patologia , Nanopartículas/uso terapêutico
5.
Neurosurg Focus ; 56(1): E15, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163359

RESUMO

OBJECTIVE: Mixed-reality simulation is an emerging tool for creating anatomical models for preoperative planning. Its use in neurosurgical training (NT) has been limited because of the difficulty in real-time interactive teaching. This study describes the development of a patient-specific, interactive mixed-reality NT system. The authors took cases of intracranial tumor resection or neurovascular compression (NVC) as examples to verify the technical feasibility and efficacy of the mixed-reality NT system for residents' training and preoperative planning. METHODS: This study prospectively enrolled 40 patients who suffered from trigeminal neuralgia, hemifacial spasms, or intracranial tumors. The authors used a series of software programs to process the multimodal imaging data, followed by uploading the holographic models online. They used a HoloLens or a standard iOS device to download and display the holographic models for training. Ten neurosurgical residents with different levels of surgical experience were trained with this mixed-reality NT system. Change in surgical strategy was recorded, and a questionnaire survey was conducted to evaluate the efficacy of the mixed-reality NT system. RESULTS: The system allows the trainer and trainee to view the mixed-reality model with either a HoloLens or an iPad/iPhone simultaneously online at different locations. Interactive manipulation and instant updates were able to be achieved during training. A clinical efficacy validation test was conducted. The surgeons changed their exploration strategy in 48.3% of the NVC cases. For residents with limited experience in surgery, the exploration strategy for 75.0% of all patients with NVC was changed after the residents were trained with the mixed-reality NT system. Of the 60 responses for intracranial tumors, the trainee changed the surgical posture in 19 (31.7%) cases. The change of the location (p = 0.0338) and size (p = 0.0056) of craniotomy are significantly related to the experience of the neurosurgeons. CONCLUSIONS: The mixed-reality NT system is available for local or real-time remote neurosurgical resident training. It may effectively help neurosurgeons in patient-specific training and planning of surgery for cases of NVC and intracranial tumor. The authors expect the system to have a broader application in neurosurgery in the near future.


Assuntos
Neoplasias Encefálicas , Neurocirurgia , Humanos , Neurocirurgia/educação , Procedimentos Neurocirúrgicos/métodos , Simulação por Computador , Neurocirurgiões/educação , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia
6.
Int J Mol Sci ; 24(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38139020

RESUMO

Organic phosphorus (OP) is an essential component of the soil P cycle, which contributes to barley nutrition after its mineralization into inorganic phosphorus (Pi). However, the dynamics of OP utilization in the barley rhizosphere remain unclear. In this study, phytin was screened out from six OP carriers, which could reflect the difference in OP utilization between a P-inefficient genotype Baudin and a P-efficient genotype CN4027. The phosphorus utilization efficiency (PUE), root morphological traits, and expression of genes associated with P utilization were assessed under P deficiency or phytin treatments. P deficiency resulted in a greater root surface area and thicker roots. In barley fed with phytin as a P carrier, the APase activities of CN4027 were 2-3-fold lower than those of Baudin, while the phytase activities of CN4027 were 2-3-fold higher than those of Baudin. The PUE in CN4027 was mainly enhanced by activating phytase to improve the root absorption and utilization of Pi resulting from OP mineralization, while the PUE in Baudin was mainly enhanced by activating APase to improve the shoot reuse capacity. A phosphate transporter gene HvPHT1;8 regulated P transport from the roots to the shoots, while a purple acid phosphatase (PAP) family gene HvPAPhy_b contributed to the reuse of P in barley.


Assuntos
6-Fitase , Hordeum , Fósforo/metabolismo , Hordeum/genética , Hordeum/metabolismo , 6-Fitase/metabolismo , Ácido Fítico/metabolismo , Genótipo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
7.
Bioengineering (Basel) ; 10(11)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38002414

RESUMO

Mixed Reality Navigation (MRN) is pivotal in augmented reality-assisted intelligent neurosurgical interventions. However, existing MRN registration methods face challenges in concurrently achieving low user dependency, high accuracy, and clinical applicability. This study proposes and evaluates a novel registration method based on a laser crosshair simulator, evaluating its feasibility and accuracy. A novel registration method employing a laser crosshair simulator was introduced, designed to replicate the scanner frame's position on the patient. The system autonomously calculates the transformation, mapping coordinates from the tracking space to the reference image space. A mathematical model and workflow for registration were designed, and a Universal Windows Platform (UWP) application was developed on HoloLens-2. Finally, a head phantom was used to measure the system's target registration error (TRE). The proposed method was successfully implemented, obviating the need for user interactions with virtual objects during the registration process. Regarding accuracy, the average deviation was 3.7 ± 1.7 mm. This method shows encouraging results in efficiency and intuitiveness and marks a valuable advancement in low-cost, easy-to-use MRN systems. The potential for enhancing accuracy and adaptability in intervention procedures positions this approach as promising for improving surgical outcomes.

8.
J Pharm Anal ; 13(9): 1024-1040, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37842660

RESUMO

Specnuezhenide (SNZ) is among the main components of Fructus Ligustri Lucidi, which has anti-inflammation, anti-oxidation, and anti-tumor effect. The low bioavailability makes it difficult to explain the mechanism of pharmacological effect of SNZ. In this study, the role of the gut microbiota in the metabolism and pharmacokinetics characteristics of SNZ as well as the pharmacological meaning were explored. SNZ can be rapidly metabolized by the gut microbiome, and two intestinal bacterial metabolites of SNZ, salidroside and tyrosol, were discovered. In addition, carboxylesterase may be the main intestinal bacterial enzyme that mediates its metabolism. At the same time, no metabolism was found in the incubation system of SNZ with liver microsomes or liver homogenate, indicating that the gut microbiota is the main part involved in the metabolism of SNZ. In addition, pharmacokinetic studies showed that salidroside and tyrosol can be detected in plasma in the presence of gut microbiota. Interestingly, tumor development was inhibited in a colorectal tumor mice model administered orally with SNZ, which indicated that SNZ exhibited potential to inhibit tumor growth, and tissue distribution studies showed that salidroside and tyrosol could be distributed in tumor tissues. At the same time, SNZ modulated the structure of gut microbiota and fungal group, which may be the mechanism governing the antitumoral activity of SNZ. Furthermore, SNZ stimulates the secretion of short-chain fatty acids by intestinal flora in vitro and in vivo. In the future, targeting gut microbes and the interaction between natural products and gut microbes could lead to the discovery and development of new drugs.

9.
J Asian Nat Prod Res ; : 1-9, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37705345

RESUMO

Eriocitrin is a flavonoid glycoside with strong antioxidant capacity that has a variety of pharmacological activities, such as hypolipidemic, anticancer and anti-inflammatory effects. We found that the gut microbiota could rapidly metabolize eriocitrin. By using LC/MSn-IT-TOF, we identified three metabolites of eriocitrin metabolized in the intestinal microbiota: eriodictyol-7-O-glucoside, eriodictyol, and dihydrocaffeic acid. By comparing these two metabolic pathways of eriocitrin (the gut microbiota and liver microsomes), the intestinal microbiota may be the primary metabolic site of eriocitrin metabolism. These findings provide a theoretical foundation for the study of pharmacologically active substances.

10.
Front Cardiovasc Med ; 10: 1194814, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424925

RESUMO

A 52-year-old Chinese woman was admitted to a cardiac intensive care unit (CCU) due to nausea, vomiting, and dyspnea, which began a day before her hospitalization. Metoprolol succinate and conventional treatment for acute myocardial infarction (AMI) were initially administered to the patient based on electrocardiogram (ECG) findings and elevated cardiac troponin I (cTnI). However, the following day, she developed aggravated nausea, vomiting, fever, sweating, a flushed face, a rapid heart rate, and a significant rise in blood pressure. Furthermore, ultrasonic cardiography (UCG) displayed takotsubo-like changes; nevertheless, ECG indicated inconsistent cTnI peaks with extensive infarction. After coronary computed tomography angiography (CTA) ruled out (AMI), and in conjunction with the uncommon findings, we strongly suspected that the patient had a secondary condition of pheochromocytoma-induced takotsubo cardiomyopathy (Pheo-TCM). In the meanwhile, the use of metoprolol succinate was promptly discontinued. This hypothesis was further supported by the subsequent plasma elevation of multiple catecholamines and contrast-enhanced computed tomography (CECT). After one month of treatment with high-dose Phenoxybenzamine in combination with metoprolol succinate, the patient met the criteria for surgical excision and successfully underwent the procedure. This case report demonstrated that pheochromocytoma could induce TCM and emphasized the significance of distinguishing it from AMI (in the context of beta-blocker usage and anticoagulant management).

11.
J Thromb Thrombolysis ; 56(3): 388-397, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37466848

RESUMO

Coronary microvascular endothelial cells (CMECs) react to changes in coronary blood flow and myocardial metabolites and regulate coronary blood flow by balancing vasoconstrictors-such as endothelin-1-and the vessel dilators prostaglandin, nitric oxide, and endothelium-dependent hyperpolarizing factor. Coronary microvascular endothelial cell dysfunction is caused by several cardiovascular risk factors and chronic rheumatic diseases that impact CMEC blood flow regulation, resulting in coronary microcirculation dysfunction (CMD). The mechanisms of CMEC dysfunction are not fully understood. However, the following could be important mechanisms: the overexpression and activation of nicotinamide adenine dinucleotide phosphate oxidase (Nox), and mineralocorticoid receptors; the involvement of reactive oxygen species (ROS) caused by a decreased expression of sirtuins (SIRT3/SIRT1); forkhead box O3; and a decreased SKCA/IKCA expression in the endothelium-dependent hyperpolarizing factor electrical signal pathway. In addition, p66Shc is an adapter protein that promotes oxidative stress; although there are no studies on its involvement with cardiac microvessels, it is possible it plays an important role in CMD.


Assuntos
Isquemia Miocárdica , Doenças Vasculares , Humanos , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Microcirculação , Células Endoteliais/metabolismo , Doenças Vasculares/metabolismo , Vasos Coronários , Endotélio Vascular/metabolismo
12.
Front Cell Infect Microbiol ; 13: 1191936, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37260696

RESUMO

Numerous studies have demonstrated that gut microbiota plays an important role in the development and treatment of different cardiovascular diseases, including hypertension, heart failure, myocardial infarction, arrhythmia, and atherosclerosis. Furthermore, evidence from recent studies has shown that gut microbiota contributes to the development of myocarditis. Myocarditis is an inflammatory disease that often results in myocardial damage. Myocarditis is a common cause of sudden cardiac death in young adults. The incidence of myocarditis and its associated dilated cardiomyopathy has been increasing yearly. Myocarditis has gained significant attention on social media due to its association with both COVID-19 and COVID-19 vaccinations. However, the current therapeutic options for myocarditis are limited. In addition, little is known about the potential therapeutic targets of myocarditis. In this study, we review (1) the evidence on the gut-heart axis, (2) the crosslink between gut microbiota and the immune system, (3) the association between myocarditis and the immune system, (4) the impact of gut microbiota and its metabolites on myocarditis, (5) current strategies for modulating gut microbiota, (6) challenges and future directions for targeted gut microbiota in the treatment of myocarditis. The approach of targeting the gut microbiota in myocarditis is still in its infancy, and this is the study to explore the gut microbiota-immune system-myocarditis axis. Our findings are expected to pave the way for the use of gut microbiota as a potential therapeutic target in the treatment of myocarditis.


Assuntos
COVID-19 , Cardiomiopatia Dilatada , Microbioma Gastrointestinal , Miocardite , Adulto Jovem , Humanos , Miocardite/terapia , Miocárdio
14.
Nature ; 616(7955): 66-72, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36949195

RESUMO

Precise integration of two-dimensional (2D) semiconductors and high-dielectric-constant (k) gate oxides into three-dimensional (3D) vertical-architecture arrays holds promise for developing ultrascaled transistors1-5, but has proved challenging. Here we report the epitaxial synthesis of vertically aligned arrays of 2D fin-oxide heterostructures, a new class of 3D architecture in which high-mobility 2D semiconductor fin Bi2O2Se and single-crystal high-k gate oxide Bi2SeO5 are epitaxially integrated. These 2D fin-oxide epitaxial heterostructures have atomically flat interfaces and ultrathin fin thickness down to one unit cell (1.2 nm), achieving wafer-scale, site-specific and high-density growth of mono-oriented arrays. The as-fabricated 2D fin field-effect transistors (FinFETs) based on Bi2O2Se/Bi2SeO5 epitaxial heterostructures exhibit high electron mobility (µ) up to 270 cm2 V-1 s-1, ultralow off-state current (IOFF) down to about 1 pA µm-1, high on/off current ratios (ION/IOFF) up to 108 and high on-state current (ION) up to 830 µA µm-1 at 400-nm channel length, which meet the low-power specifications projected by the International Roadmap for Devices and Systems (IRDS)6. The 2D fin-oxide epitaxial heterostructures open up new avenues for the further extension of Moore's law.

15.
Nat Mater ; 22(7): 832-837, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36894772

RESUMO

The scaling of silicon-based transistors at sub-ten-nanometre technology nodes faces challenges such as interface imperfection and gate current leakage for an ultrathin silicon channel1,2. For next-generation nanoelectronics, high-mobility two-dimensional (2D) layered semiconductors with an atomic thickness and dangling-bond-free surfaces are expected as channel materials to achieve smaller channel sizes, less interfacial scattering and more efficient gate-field penetration1,2. However, further progress towards 2D electronics is hindered by factors such as the lack of a high dielectric constant (κ) dielectric with an atomically flat and dangling-bond-free surface3,4. Here, we report a facile synthesis of a single-crystalline high-κ (κ of roughly 16.5) van der Waals layered dielectric Bi2SeO5. The centimetre-scale single crystal of Bi2SeO5 can be efficiently exfoliated to an atomically flat nanosheet as large as 250 × 200 µm2 and as thin as monolayer. With these Bi2SeO5 nanosheets as dielectric and encapsulation layers, 2D materials such as Bi2O2Se, MoS2 and graphene show improved electronic performances. For example, in 2D Bi2O2Se, the quantum Hall effect is observed and the carrier mobility reaches 470,000 cm2 V-1 s-1 at 1.8 K. Our finding expands the realm of dielectric and opens up a new possibility for lowering the gate voltage and power consumption in 2D electronics and integrated circuits.


Assuntos
Grafite , Silício , Eletrônica , Semicondutores
16.
Cell Death Dis ; 14(3): 189, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899018

RESUMO

Prostate cancer poses a great threat to men's health worldwide, yet its treatment is still limited by the unclear understanding of its molecular mechanisms. CDKL3 is a molecule with a recently discovered regulatory role in human tumors, and its relationship with prostate cancer is unknown. The outcomes of this work showed that CDKL3 was significantly upregulated in prostate cancer tissues compared with adjacent normal tissues, and was significantly positively correlated with tumor malignancy. Knockdown of CDKL3 levels in prostate cancer cells significantly inhibited cell growth and migration and enhanced apoptosis and G2 arrest of the cell cycle. Cells with lower CDKL3 expression also had relatively weaker in vivo tumorigenic capacity as well as growth capacity. Exploration of downstream mechanisms of CDKL3 may regulate STAT1, which has co-expression characteristics with CDKL3, by inhibiting CBL-mediated ubiquitination of STAT1. Functionally, STAT1 is aberrantly overexpressed in prostate cancer and has a tumor-promoting effect similar to that of CDKL3. More importantly, the phenotypic changes of prostate cancer cells induced by CDKL3 were dependent on ERK pathway and STAT1. In summary, this work identifies CDKL3 as a new prostate cancer-promoting factor, which also has the potential to be a therapeutic target for prostate cancer.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Proliferação de Células , Neoplasias da Próstata/patologia , Ciclo Celular , Divisão Celular , Sistema de Sinalização das MAP Quinases , Linhagem Celular Tumoral , Proteínas Serina-Treonina Quinases/metabolismo , Fator de Transcrição STAT1/metabolismo
17.
Front Endocrinol (Lausanne) ; 14: 1085799, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36843578

RESUMO

Obesity is a complex disease characterized by excessive fat accumulation which is caused by genetic, environmental and other factors. In recent years, there has been an increase in the morbidity, disability rate,and mortality due to obesity, making it great threat to people's health and lives, and increasing public health care expenses. Evidence from previous studies show that weight loss can significantly reduce the risk of obesity-related complications and chronic diseases. Diet control, moderate exercise, behavior modification programs, bariatric surgery and prescription drug treatment are the major interventions used to help people lose weight. Among them, anti-obesity drugs have high compliance rates and cause noticeable short-term effects in reducing obese levels. However, given the safety or effectiveness concerns of anti-obesity drugs, many of the currently used drugs have limited clinical use. Glucagon-like peptide-1 receptor (GLP-1R) agonists are a group of drugs that targets incretin hormone action, and its receptors are widely distributed in nerves, islets, heart, lung, skin, and other organs. Several animal experiments and clinical trials have demonstrated that GLP-1R agonists are more effective in treating or preventing obesity. Therefore, GLP-1R agonists are promising agents for the treatment of obese individuals. This review describes evidence from previous research on the effects of GLP-1R agonists on obesity. We anticipate that this review will generate data that will help biomedical researchers or clinical workers develop obesity treatments based on GLP-1R agonists.


Assuntos
Fármacos Antiobesidade , Receptor do Peptídeo Semelhante ao Glucagon 1 , Animais , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Obesidade/etiologia , Incretinas , Fármacos Antiobesidade/uso terapêutico , Redução de Peso
18.
Theranostics ; 12(18): 7775-7787, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36451858

RESUMO

Rationale: The efficacy and mechanism of hydroxyurea in the treatment of atherosclerosis have rarely been reported. The goal of this study was to investigate the efficacy of hydroxyurea in high-fat diet-fed ApoE-/- mice against atherosclerosis and examine the possible mechanism underlying treatment outcomes. Methods: ApoE-/- mice were fed a high-fat diet for 1 month and then administered hydroxyurea by gavage continuously for 2 months. Aortic root hematoxylin-eosin (H&E) staining and oil red O staining were used to verify the efficacy of hydroxyurea; biochemical methods and ELISA were used to detect changes in relevant metabolites in serum. 16S rRNA was used to detect composition changes in the intestinal bacterial community of animals after treatment with hydroxyurea. Metabolomics methods were used to identify fecal metabolites and their changes. Immunohistochemical staining and ELISA were used for the localization and quantification of intestinal NPC1L1. Results: We showed that aortic root HE staining and oil red O staining determined the therapeutic efficacy of hydroxyurea in the treatment of atherosclerosis in high-fat diet-fed ApoE-/- mice. Serological tests verified the ability of hydroxyurea to lower total serum cholesterol and LDL cholesterol. The gut microbiota was significantly altered after HU treatment and was significantly different from that after antiplatelet and statin therapy. Meanwhile, a metabolomic study revealed that metabolites, including stearic acid, palmitic acid and cholesterol, were significantly enriched in mouse feces. Further histological and ELISAs verified that the protein responsible for intestinal absorption of cholesterol in mice, NPC1L1, was significantly reduced after hydroxyurea treatment. Conclusions: In high-fat diet-fed ApoE-/- mice, hydroxyurea effectively treated atherosclerosis, lowered serum cholesterol, modulated the gut microbiota at multiple levels and affected cholesterol absorption by reducing NPC1L1 in small intestinal epithelial cells.


Assuntos
Aterosclerose , Microbioma Gastrointestinal , Camundongos , Animais , Hidroxiureia , Proteína C1 de Niemann-Pick , RNA Ribossômico 16S/genética , Apolipoproteínas E/genética , Aterosclerose/tratamento farmacológico
19.
Front Bioeng Biotechnol ; 10: 1068699, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36425650

RESUMO

Biological macromolecules have been widely used as biomedical carriers in treating non-small cell lung cancer (NSCLC) due to their biocompatibility, targeting, biodegradability, and antitumor efficacy. Nanotechnology has been used in clinics to treat many diseases, including cancer. Nanoparticles (NPs) can accumulate drugs into tumors because of their enhanced permeability and retention (EPR) effects. However, the lack of active targeting ligands affects NPs drug delivery. Arginine-glycine-aspartic (RGD), as a targeting ligand, has distinct advantages in targeting and safety. In the present study, an RGD peptide-modified nanogel called RGD-polyethylene glycol-poly (L-phenylalanine-co-L-cystine) (RGD-PEG-P (LP-co-LC-P (LP-co-LC) was investigated to deliver vincristine (VCR) as NSCLC therapy. The VCR-loaded targeted nanoparticle (RGD-NP/VCR) demonstrated excellent antitumor efficacy compared to the free drug (VCR) and untargeted nanoparticle (NP/VCR) without any significant side effects. RGD-NP/VCR has better tumor inhibition and fewer side effects, indicating its potential benefit in NSCLC treatment.

20.
Front Pharmacol ; 13: 900701, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36324693

RESUMO

Background: Hypothyroidism is a disease commonly observed in outpatient clinics but can occasionally cause severe cardiovascular and respiratory diseases requiring hospitalization. Case report: The patient reported herein suffered from heart failure, massive pericardial effusion, type II respiratory failure, and hypothyroidism. There was no related basic diseases of respiratory and cardiovascular system in the past. She failed to be weaned from invasive ventilation multiple times after routine treatment and was finally successfully weaned on day five of receiving the combination therapy of a high-dose methylprednisolone intravenous drip and levothyroxine oral administration. Conclusion: This case report indicates that hypothyroidism may be a cause of type II respiratory failure, heart failure, and massive pericardial effusion without cardiac tamponade and that a combination of levothyroxine and corticosteroids could effectively treat the disease. Clinical workers should consider the role of thyroid function in diagnosis, and the admission team should include this aspect in the monitoring scope. Moreover, the role of hormones in the treatment of patients with severe hypothyroidism should not be ignored, and timely treatment should be provided.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...